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Abstract:  

Lattice radiation therapy (LRT) is a three-dimensional advanced model of spatially fractionated radiation 

therapy that precisely regulates the peak-to-valley dose ratio by distributing high-dose vertices (1–2 cm) and 

low-dose valleys (3–5 cm apart) through a three-dimensional matrix (PVDR≥3:1), maximizing dose 

heterogeneity to destroy tumors and protect normal tissues. Its core technology relies on multiple leaf 

collimators or proton beams to generate high-dose peck zones with regular geometric arrangements, 

combined with reverse optimization algorithms and real-time image guidance (such as CBCT and 

MRgRT), to ensure dose conformity and safety. LRT has therapeutic advantages through 

multidimensional biological effects, including bystander effects on the activation of apoptosis in 

unirradiated areas, immune microenvironment remodelling (increased infiltration of CD8+ T cells), and 

vascular normalization, which enhances chemoradiotherapy sensitivity, thereby resulting in a high local 

control rate (symptom relief rate of 82.9%-98.7%) and low toxicity (acute grade 3 toxicity<5%) for giant 

tumors (>5 cm) and metastases (such as bone and liver metastases). Clinical protocols are divided into 

curative options (a single dose of 15–20 Gy combined with conventional fractionation) and palliative 

options (a single dose of 10–45 Gy), combined with immune checkpoint inhibitors or antiangiogenic drugs, 

which can significantly prolong survival (such as PFS reaching 8.5 months). The technological innovation 

progress has focused on AI dynamic optimization, the Bragg peak advantage of proton LRT, and real-time 

tracking of multimodal images. In the future, it is necessary to promote phase III multicenter validation, 

dose standardization, and biomarker research to expand its application boundaries in personalized precision 

radiotherapy. 
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Introduction

The Core Theory, Technical Principles, and 

Therapeutic Mechanisms of Lattice RT 

Lattice radiation therapy (LRT) is a three-

dimensional evolutionary form of spatially 

fractionated radiation therapy (SFRT). Compared 

with traditional 2D GRID technology, LRT 

achieves three-dimensional control of the dose 

distribution by optimizing high-dose peaks and 

low-dose valleys in a three-dimensional matrix 

within the tumor [1] [4] [6] [13] [39]. Its core 

theory emphasizes precise control of the peak-to-

valley dose ratio (PVDR), which maximizes dose 

heterogeneity within the tumor while efficiently 

killing tumor cells and reducing damage to 

surrounding normal tissues [1] [4] [6] [13]. This 

theoretical breakthrough provides a unique dose 

delivery mode for the treatment of solid tumors. 

At the technical principles level, LRT 

generates spherical or cylindrical high-dose 

vertices with a diameter of 1–2 cm through 

multileaf collimator (MLC) or proton beam 

modulation technology and arranges them 
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according to regular geometric structures such 

as triangles and cubes, with vertex center 

spacings typically ranging from 3–5 cm [9] 

[11] [32] [37]. The optimization of the dose 

distribution relies on a reverse planning 

system, which dynamically adjusts the spatial 

relationship between high-dose and low-dose 

regions through algorithms to ensure the 

treatment goal of PVDR ≥ 3:1 [9] [11] [32] 

[37]. For example, TomoTherapy technology 

can be used for spiral computed tomography 

radiation therapy, real-time optimization of the 

valley-to-peak-dose ratio (VPDR) is achieved 

through dynamic modulation, and the precise 

design of the vertex size and spacing directly 

determines the level of dose heterogeneity 

within the tumor microenvironment [1] [11]. 

From the perspective of therapeutic mechanisms, 

LRT exerts antitumour effects through multiple 

biological effects: 

 Spectator effect and distant effect: A high 

dose vertex induces DNA double-strand 

breaks in tumor cells and releases 

proapoptotic factors (such as TGF-β and 

ROS), activating apoptotic signalling 

pathways in nonirradiated areas and 

inhibiting tumor regeneration [8] [16] [21]; 

 Immune activation effect: LRT promotes the 

release of tumor antigens and damage-

associated molecular patterns (DAMPs), 

enhances the infiltration of CD8+ T cells into 

the tumor microenvironment (TME), and 

reshapes the immunosuppressive 

microenvironment [20] [25] [30]; 

 Vascular normalization effect: A low dose 

through area promotes endothelial cell repair, 

and reducing hypoxia inducible factor (HIF-

1α) expression improves the tumor blood 

supply and oxygenation status, thereby 

increasing sensitivity to subsequent 

radiotherapy or chemotherapy [21] [35]. 

These synergistic mechanisms endow LRT 

with unique advantages in controlling local 

progression and inhibiting distant metastasis. 

Design and optimization of the spatial 

distribution, advantages, and clinical 

indications of lattice RT 

Design and Optimization of the Spatial 

Distribution: The spatial distribution design of 

LRT requires a coordinated balance between 

the tumor geometry and dosimetric objectives. 

The lattice-OPT tool is based on a reverse 

optimization algorithm and dynamically adjusts 

the vertex spacing (D, usually 3–5 cm) and 

vertex diameter (d, 1–2 cm), maximizing tumor 

volume coverage while ensuring a peak-to-

valley dose ratio (PVDR ≥ 3:1) [9] [11] [27] 

[31]. For example, the triangle vertex 

arrangement pattern can effectively reduce the 

dose cold zone, which is especially suitable for 

tumors with irregular morphology or invasion 

of adjacent key organs [9] [27]. This type of 

optimization strategy, combined with Monte 

Carlo dose calculations or machine learning 

prediction models, can further improve the 

accuracy of dose distribution conformity and 

heterogeneity regulation [11] [31]. 

The unique dose distribution of LRT endows it 

with significant clinical advantages: 

 High local control rate (LCR): Clinical 

studies have shown that the symptom relief 

rate of patients after LRT reaches 82.9%-

98.7%, demonstrating excellent local control 

ability for large tumors with a volume greater 

than 5 cm [7] [14]; 

 Low toxicity characteristics: Through three-

dimensional dose carving technology, the 

average dose (Dmean) of surrounding normal 

tissues is reduced by 30%-50%, and the 

incidence of acute grade 3 or higher radiation 

toxicity is less than 5%, which is significantly 

better than that of traditional radiotherapy [7] 

[14] [28]. 

Scope of clinical indications: Most practicing 

radiation therapy oncologists (100% in the 

United States and 72.7% globally) believe that 

SFRT is the recognized standard radiotherapy 

option for large-volume tumors or advanced 

tumors [10]. LRT is currently mainly used in the 

following two clinical scenarios: 

 Localized advanced giant tumors, including 

head and neck cancer (symptom relief rate of 

82.9%) [2], non-small cell lung cancer 

(NSCLC) [14], and soft tissue sarcoma (such 

as retroperitoneal sarcoma) [23] [38], whose 

large lesions can overcome radiation 

resistance caused by tumor hypoxia through 

dose heterogeneity; 
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 Metastatic tumors: For oligometastatic 

lesions such as bone metastases (such as 

spinal metastases) and liver metastases, LRT 

can be combined with systemic therapy to 

achieve synergistic effects of local ablation 

and systemic control [34] [41]. With 

technological iteration, its indications are 

gradually expanding to the field of 

combination therapy for recurrent tumors and 

immune therapy-resistant lesions. 

Clinical Protocol and Efficacy Safety of 

Lattice RT 

 

The clinical protocol plan for LRT can be 

divided into two categories on the basis of 

treatment goals: curative and palliative: 

 Curative protocol: A single high-dose (15–20 

Gy) vertex irradiation combined with 

conventional fractionated radiotherapy (such 

as 25 × 2 Gy) enhances local control through 

dose heterogeneity and reduces the 

cumulative dose to normal tissues. This 

protocol is suitable for locally advanced 

tumors that can be surgically removed or 

potentially cured [7] [23]. When the 

radioimmune response model is considered, 

the benefits of lattice RT are more significant 

when conventional radiotherapy with a low 

dose fraction is used for large tumors in 

curative treatment [3]. 

 Palliative approach: With the goal of rapidly 

relieving symptoms (such as pain or 

bleeding), single or divided (3–5 times) 

vertex irradiation (10–45 Gy) is used to 

achieve short-term symptom control through 

rapid tumor ablation in the peak dose zone, 

especially for advanced metastatic patients 

[15] [19] [34]. 

The sequencing time and dose adjustment of 

lattice RT and conventional external 

irradiation are variable. In the curative 

protocol, synchronous chemotherapy and 

immunotherapy were received and combined 

by 54.5% and 28.6%, respectively [10]. 

Clinical studies have confirmed that LRT has 

significant therapeutic efficacy in various 

types of tumors: 

 Symptom relief rate: After patients receive 

LRT, the median survival time of patients 

with head and neck cancer is extended to 12 

months, and the median duration of pain 

relief or compression symptoms can be 

shortened to 8 days [7] [34]; 

 Tumor regression rate: LRT can provide 

clinical benefits for 84.2% of patients with 

locally advanced large-volume unresectable 

head and neck tumors. For large tumors with 

a volume greater than 5 cm (such as soft 

tissue sarcoma or non-small cell lung cancer), 

the tumor volume reduction rate after 

treatment is greater than 50%, and some 

cases can be converted into surgical resection 

opportunities [14] [38]. 

The existing clinical experience seems to 

confirm the safety of LRT [12]. LRT 

significantly optimizes safety through three-

dimensional dose carving technology, and 

compared with 2D Grid technology, Lattice 

significantly reduces the dose to the skin and 

key organs [3], 

 Acute toxicity mainly includes reversible 

dermatitis or mucositis of grade 1--2 

(incidence rate of approximately 60%-75%), 

with no reported treatment-related deaths [7] 

[28]. According to the evaluation criteria of 

the radiotherapy tumor group (RTOG), many 

LRT clinical practices have not reported 

grade 3 adverse events [2]. 

 Long-term toxicity: The incidence of 

radiation-induced fibrosis or organ 

dysfunction is less than 10%, which is 

significantly lower than that of traditional 

radiotherapy (usually for traditional 

radiotherapy >20%), and its mechanism is 

closely related to the protective effect of the 

trough dose on normal tissues [14] [38]. 

These data indicate that LRT not only 

improves efficacy but also achieves good risk 

benefit balance. 

Biological mechanism and combination 

therapy strategy of Lattice RT 

Lattice RT (LRT) exerts its biological effects 

by reshaping the tumor immune 

microenvironment. Research has shown that 

LRT can significantly upregulate the 

expression of PD-L1 on the surface of tumor 

cells and promote T-cell infiltration, thereby 
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enhancing the immune therapy response to 

anti-PD-1/PD-L1 inhibitors. Preclinical model 

data show that the combination of LRT and 

immune checkpoint inhibitors can significantly 

increase the incidence of distant effects by up 

to 30%, revealing the potential mechanism of 

the synergistic effect between radiotherapy and 

immunotherapy [20] [30] [42]. 

The emergence of immune checkpoint 

inhibitors (ICIs) has completely changed the 

treatment methods for recurrent and 

metastatic patients. The lattice RT method has 

the potential to reduce lymphocyte depletion 

and immune suppression, stimulate 

antitumour immunity, and synergize with ICIs 

[18]. 

In terms of combination therapy strategies, 

LRT exhibits multilevel synergistic effects with 

targeted drugs. First, the combination of the 

antiangiogenic drugs bevacizumab and LRT 

can improve tumor microcirculation and 

prolong progression-free survival (PFS) to 8.5 

months, indicating a dual benefit of 

radiosensitization and vascular normalization 

[35]. Second, for DNA damage repair-deficient 

tumors, the combination of LRT and PARP 

inhibitors can significantly increase tumor 

radiosensitivity by enhancing radiation-induced 

accumulation of DNA double-strand breaks 

[21]. This multitarget combination strategy 

provides a new direction for personalized 

therapy. 

However, the clinical application of LRT 

combination therapy still faces challenges. Some 

tumors develop resistance to combination 

therapy due to the presence of an 

immunosuppressive microenvironment, which 

involves infiltration of myeloid-derived 

suppressor cells (MDSCs) and regulatory T-

cellcell (Treg) activation and other processes [20] 

[30]. At present, research is dedicated to 

exploring novel biomarker systems, including the 

tumor mutation burden (TMB), interferon-γ 

(IFN-γ) signalling pathway activity, and other 

predictive indicators, to achieve more accurate 

patient stratification and treatment plan 

optimization. 

Technological progress and innovation 

direction of lattice RT 

The application of CBCT scanning can reduce 

the uncertainty of each treatment and quantify 

the dose effect of alignment errors in lattice 

therapy. When CBCT images are used, the 

isocenter shift is not greater than 5 mm to 

simulate large errors during treatment. The 

dose ratio (DR) of the average dose in high-

dose and low-dose spheres is used to quantify 

the reduction in the dose gradient and minimize 

the dose impact on high-dose spheres [5]. 

Fully automatic generation and placement of 

various vertices and their scales through the use 

of scripting application programming interfaces 

in the treatment planning system to order the 

lattice of inches, center-to-center distance, and 

vertices is automatically segmented, dose 

optimized, and calculated [17] [26] to obtain a 

more accurate and reasonable lattice RT plan for 

optimal PVDR. 

Multimodal integration and precise design 

drive the expansion of its clinical application 

boundaries. In recent years, the development 

of dynamic vertex adjustment technology has 

significantly improved the adaptability of 

radiotherapy plans. Real-time optimization 

algorithms based on artificial intelligence (AI) 

can dynamically track changes in tumor 

morphology (such as respiratory movement or 

volume shrinkage during treatment), 

automatically adjust the spatial distribution of 

lattice vertices, and maintain the biological 

effects of dose carving [22] [24]. This 

technological breakthrough provides a new 

paradigm for the precise irradiation of 

dynamic tumor targets. 

The fusion of image-guided technology further 

enhances the implementation accuracy of LRT. 

The magnetic resonance real-time guided 

radiotherapy (MRgRT) system achieves 

motion-sensitive areas such as liver and 

pancreatic tumors through high soft tissue 

resolution and a millisecond-level imaging 

refresh rate to achieve real-time dose tracking 

of tumors, which can control the lattice dose 

gradient error within 3% while effectively 

suppressing dose-blurring effects caused by 

respiratory motion [36] [40]. In addition, the 

innovative application of proton LRT is 

redefining the physical advantages of radiation 

therapy. By utilizing the Bragg peak 

characteristics of the proton beam, a steeper 

dose drop gradient can be formed within the 
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degree of reduction in the tumor target area, 

reducing the average radiation dose to normal 

tissues by more than 40% compared with 

traditional photon LRT, which is especially 

suitable for complex cases adjacent to crisis 

organs [6] [33] [37]. 

Future technological development will focus 

on the construction of multiparameter adaptive 

systems, such as integrating AI dynamic 

optimization, multimodal image navigation, 

and particle beam modulation technology, to 

achieve a leapfrog upgrade from "geometric 

precision" to "biological precision". 

Future research on lattice RT 

The clinical application and optimization of 

lattice RT (LRT) require in-depth research in 

four core directions. 

First, multicenter validation is a crucial step in 

establishing the clinical status of LRT. There is 

an urgent need to design a phase III 

randomized controlled trial to systematically 

compare the differences between LRT and 

stereotactic radiotherapy (SBRT) in terms of 

the local control rate, remote effects and 

toxicity spectrum, especially to include 

subgroup analyses of different tumor types 

(such as pancreatic cancer and soft tissue 

sarcoma) to determine their preferred 

indications [14] [30]. This type of research will 

provide high-level evidence-based support for 

the development of clinical guidelines for LRT. 

Second, the establishment of a dose 

standardization system is the core challenge for 

promoting LRT technology. The prescription 

specification based on the equivalent uniform 

dose (EUD) needs to integrate tumor volume 

heterogeneity, radiobiological parameters (such 

as alpha/beta values), and normal tissue 

tolerated doses and achieve precise mapping 

from physical doses to biological effects 

through dose-volume histogram (DVH) 

optimization [30] [1]. In addition, dynamic 

dose carving techniques, such as real-time dose 

adjustment guided by artificial intelligence, 

may further overcome the limitations of 

traditional fixed lattice patterns. 

To enhance the understanding of the biology, 

technical/physical parameters, experimental 

design, and clinical practice related to lattice 

RT [29], as well as the exploration of 

biological mechanisms and radiation therapy 

strategies, the next frontier area may lie in 

exploring the use of lattice RT technology and 

ICIs for combined mode therapy [18]. 

Finally, the exploration of biomarkers will 

drive LRT towards the era of personalized 

therapy. By integrating multiple omics data 

(such as spatial transcriptomics and radiomics 

data) to screen predictive biomarkers, 

including immune microenvironment features 

(CD8+ T-cell spatial distribution), DNA 

damage repair-related protein expression 

(gamma H2AX focus), and the genomic 

instability score (HRD index), an LRT efficacy 

prediction model can be constructed to guide 

the precise matching of combination therapy 

strategies [21] [30]. Future research needs to 

combine radiobiology and systems medicine 

methods to reveal the dynamic interaction 

network between LRT and the host immune 

system. 

Overview Summary 

Lattice radiotherapy (LRT), an innovative 

technique for three-dimensional dose 

heterogeneity regulation, has demonstrated 

unique clinical value in the treatment of giant 

tumors. Through spatial dose-carving 

technology, LRT can significantly reduce 

radiation exposure to surrounding normal 

tissues while increasing the bioequivalent dose 

to tumor target areas, thereby achieving dual 

optimization of efficacy and safety. Its 

biological mechanism involves a 

multidimensional regulatory network, 

including radiation-induced immunogenic cell 

death-mediated T-cell activation, 

normalization of the tumor vascular structure, 

remodelling of microenvironment perfusion, 

and identification of molecular patterns related 

to radiation injury. The systemic antitumour 

immune response is triggered by DAMPs [6] 

[30]. These characteristics of LRT combined 

with immune checkpoint inhibitors, 

antiangiogenic drugs, and other treatment 

options provide scientific evidence and have 

potential for expanding indications in solid 

tumors such as hepatocellular carcinoma and 

non-small cell lung cancer [30] [43]. 

In the future, the technological iteration of LRT 

will focus on three core directions: first, 
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dynamic target tracking and real-time dose 

optimization are achieved through multimodal 

imaging guidance (such as MR Linac and 4D-

CT) to address the geometric uncertainty 

caused by respiratory movement and tumor 

regression during treatment; second, the 

development of dose algorithms based on 

artificial intelligence will promote the 

evolution of lattice patterns from fixed 

templates to adaptive topological structures, 

further enhancing the individualized accuracy 

of dose carving; and finally, the deep 

integration of the physical advantages and 

biological effects of proton LRT (such as 

FLASH-RT hyperhigh-speed irradiation 

combined with Bragg peak dose distribution) is 

expected to overcome the dose limitations of 

traditional photon radiotherapy and promote 

the transformation of LRT from palliative 

tumor reduction to curative treatment strategies 

[6] [30] [37] [43]. These technological 

breakthroughs and clinical translational 

research will jointly shape the new landscape 

of LRT in the field of precision tumor 

radiotherapy. 
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