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Abstract:  
This study elucidates the distinct molecular signatures and shared pathways involved in cerebral cavernous 

malformations (CCM) and ischemic stroke (IS) through a comprehensive gene expression analysis. Using 

differential gene expression profiling, we identified a significant number of unique and shared differentially 

expressed genes (DEGs) between CCM and IS. Weighted Gene Co-Expression Network Analysis 

(WGCNA) further highlighted significant gene modules associated with each disease, with a subset shared 

between them, underscoring common molecular mechanisms. Integrating intersecting DEGs and WGCNA-

identified genes into a unified analysis, we pinpointed 107 unique genes crucial to disease pathophysiology. 

Functional enrichment underscored roles in immunity and signaling, corroborated by protein-protein 

interaction networks identifying key regulatory genes such as CD8A, CD19, CCR7, and IL7R. Advanced 

statistical methods, including LASSO regression and Boruta algorithm, refined these findings, revealing 

potential diagnostic markers with high discriminatory power through ROC analysis. Immune cell infiltration 

assessments highlighted altered immune dynamics, offering insights into CCM and IS mechanistic 

underpinnings. This integrated analysis enhances understanding of the molecular landscapes of CCM and 

IS, suggesting novel therapeutic targets. 

Introduction 

Significant cerebrovascular disorders 

characterized by complex pathophysiological 

processes. Both conditions lead to disrupted 

neurological functions and pose substantial 

clinical burdens(C et al., 2022); however, they 

exhibit distinct clinical features and involve 

partially understood, disparate molecular 

mechanisms. Unraveling these molecular 

pathways is crucial for developing more effective 

diagnostic tools and therapeutic interventions. 

Previous studies have independently identified 

genes associated with CCM and IS(Subhash et al., 

2019), yet the comparative molecular landscapes 

and shared pathobiology remain unexplored. 

Understanding common molecular mechanisms 

could illuminate novel therapeutic targets and 

offer insights into disease mechanisms, potentially 

revealing shared pathways susceptible to 

modulation. 

In this study, we integrate differential gene 

expression analysis with advanced bioinformatics 

approaches, including Weighted Gene Co-

Expression Network Analysis (WGCNA), 

functional enrichment, and network analysis. We 

aim to decipher the complex molecular networks 

of CCM and IS, identify key regulatory genes, and 

explore the immune landscape alterations. By 

employing both LASSO regression and Boruta 
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algorithm, we fine-tune the identification of 

pivotal genes, assessing their diagnostic utility via 

Receiver Operating Characteristic (ROC) curve 

analysis. Through this integrative approach, we 

strive to contribute a comprehensive 

understanding of the shared and unique molecular 

architectures of CCM and IS, ultimately 

advancing potential therapeutic strategies.This 

study elucidates the distinct molecular signatures 

and shared pathways involved in cerebral 

cavernous malformations (CCM) and ischemic 

stroke (IS) through a comprehensive gene 

expression analysis. Using differential gene 

expression profiling, we identified a significant 

number of unique and shared differentially 

expressed genes (DEGs) between CCM and IS. 

Weighted Gene Co-Expression Network Analysis 

(WGCNA) further highlighted significant gene 

modules associated with each disease, with a 

subset shared between them, underscoring 

common molecular mechanisms. Integrating 

intersecting DEGs and WGCNA-identified genes 

into a unified analysis, we pinpointed 107 unique 

genes crucial to disease pathophysiology. 

Functional enrichment underscored roles in 

immunity and signaling, corroborated by protein-

protein interaction networks identifying key 

regulatory genes such as CD8A, CD19, CCR7, 

and IL7R. Advanced statistical methods, 

including LASSO regression and Boruta 

algorithm, refined these findings, revealing 

potential diagnostic markers with high 

discriminatory power through ROC analysis. 

Immune cell infiltration assessments highlighted 

altered immune dynamics, offering insights into 

CCM and IS mechanistic underpinnings. This 

integrated analysis enhances understanding of the 

molecular landscapes of CCM and IS, suggesting 

novel therapeutic targets. 

Methods 

Sample Collection and Data Preprocessing 

Gene expression data for this study were sourced 

from the GEO under the accession numbers 

GSE123968(Koskimäki et al., 2019), 

GSE130174(Lyne et al., 2019), and 

GSE16561(Barr et al., 2010). These datasets 

include expression data relevant to CCM and IS. 

The raw data were meticulously preprocessed, 

involving initial quality checks and normalization 

processes using the R package ‘limma’(Ritchie et 

al., 2015). Batch effects, which could obscure true 

biological signals, were corrected using the 

‘ComBat_seq’ function from the ‘sva’ package to 

ensure robust integration of data from different 

cohorts. Additionally, expression values were log-

transformed and filtered to retain informative 

genes for downstream analyses. 

Differential Gene Expression Analysis 

DEGs were identified separately for CCM and IS 

using the 'limma-voom' method (Ritchie et al., 

2015). For CCM, the combined and batch-

corrected dataset was used, while for IS, the 

GSE16561 dataset was analyzed independently. 

Genes with an adjusted p-value < 0.05 and 

absolute log2 fold change > 0.5 were considered 

significant. The resulting DEGs were visualized 

using volcano plots and heatmaps generated with 

the 'ggplot2' and 'pheatmap' packages, 

respectively. 

Identification of Common DEGs 

To identify shared molecular mechanisms 

between CCM and IS, we performed an 

intersection analysis of the DEGs identified in 

each condition. The overlap between CCM and IS 

DEGs was visualized using a Venn diagram 

created with the 'ggvenn' package. 

WGCNA 

We applied the 'WGCNA' R package to perform a 

weighted gene co-expression network analysis, 

aiming to identify clusters of co-expressed 

genes(Langfelder & Horvath, 2008). The scale-

free topology criterion guided the selection of the 

soft thresholding power, which was used to 

construct the network. Modules were delineated 

through dynamic tree cutting, and their 

eigengenes were subsequently correlated with 

clinical traits to pinpoint modules significantly 

associated with these traits(Zhang & Horvath, 

2005). 

Gene Functional Annotation 

Functional annotation of the identified DEIGs was 

carried out using the Database for Annotation, 

Visualization, and Integrated Discovery 

(DAVID)(Huang et al., 2009). Gene Ontology 

(GO) terms and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathways were analyzed to 

understand the biological processes and pathways 

involved(Ashburner et al., 2000; Kanehisa & 



                                    Haiying Guo et al. 

CURRENT SCIENCE 
 

CURRENT  SCIENCE 
 

CS 4 (4), 680-690 (2024) 

 

682 

 

 
 

Goto, 2000). 

Lasso Regression and Feature Selection 

We conducted a feature selection process using 

Lasso regression on two datasets, CCM and IS, 

aiming to identify key gene predictors. Lasso 

regression is utilized due to its capability to 

perform variable selection and regularization to 

improve the prediction accuracy and 

interpretability of the statistical model it produces. 

The selected features were analyzed through the 

lambda error plot to determine the optimal lambda 

value, and the minimal gene set was saved for 

subsequent analysis. 

Random Forest and Boruta Analysis 

For both CCM and IS datasets, we applied 

Random Forest analysis combined with the Boruta 

algorithm to identify important gene features. 

Boruta is an all-relevant feature selection method 

that enhances the robustness of Random Forest to 

discern whether a feature is important. Genes 

confirmed by Boruta were considered significant 

and were saved as key gene features. 

Immune Infiltration Analysis 

To estimate immune cell infiltration proportions 

within the samples, we applied the CIBERSORT 

algorithm. This analysis utilized the LM22 

signature matrix to deconvolute the expression 

data from both the CCM and IS datasets. The 

CIBERSORT results were then merged with the 

sample annotation data, allowing for a comparison 

between control and disease states. The outcomes 

were visualized using boxplots to depict the 

relative proportions of different immune cell types 

and statistically assessed using t-tests, 

differentiating between control and disease 

sample groups. 

Statistical Analysis 

Statistical analyses were performed using R 

software. P-values < 0.05 were considered 

statistically significant. 

Results 

Differential Gene Expression Analysis Reveals 

Distinct Molecular Signatures in CCM and IS 

In this study, we analyzed the differential gene 

expression profiles in CCM and IS, compared 

against respective controls. Our CCM analysis 

(Figure 1A, Supplementary Table 1) identified a 

substantial number of DEGs. The heatmap (Figure 

1C) further validates these findings by showing 

distinct clustering of CCM samples as compared 

to controls, revealing significant patterns of gene 

upregulation and downregulation. Similarly, in IS, 

a marked difference in gene expression profiles 

was observed compared to controls (Figure 1B 

and 1D, Supplementary Table 2). The 

corresponding heatmap (Figure 1D) confirms 

these observations, showcasing clear distinctions 

in gene expression that differentiate IS samples 

from controls. 

To investigate potentially shared molecular 

mechanisms between CCM and IS, we compared 

DEGs identified in each condition. The Venn 

diagram (Figure 1E) depicts the overlap between 

CCM and IS DEGs, revealing that 3,378 DEGs 

(87.2%) are unique to CCM, while 394 DEGs 

(10.2%) are exclusive to IS. Notably, 102 DEGs 

(2.6%) are common to both conditions, indicating 

possible shared molecular pathways that may 

contribute to the pathogenesis of both diseases.
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Figure 1. Differential Gene Expression Profiles in CCM and IS 

 

A: Volcano plot of differentially expressed genes 

in CCM compared to controls. Orange dots 

represent significantly upregulated genes, while 

blue dots represent significantly downregulated 

genes. The x-axis represents log2 fold change, and 

the y-axis represents -log10(P-value). 

B: Volcano plot of differentially expressed genes 

in IS compared to controls. Orange dots represent 

significantly upregulated genes, while blue dots 

represent significantly downregulated genes. The 

x-axis represents log2 fold change, and the y-axis 

represents -log10(P-value). 

C: Heatmap showing gene expression differences 

between CCM samples and controls. Red 

indicates upregulated genes, while blue indicates 

downregulated genes. 

D: Heatmap showing gene expression differences 

between IS samples and controls. Red indicates 

upregulated genes, while blue indicates 

downregulated genes. 

E: Venn diagram showing the overlap of 

differentially expressed genes between CCM and 

IS. The blue circle represents genes unique to 

CCM, the yellow circle represents genes unique to 

IS, and the overlap indicates genes common to 

both conditions. 

Weighted Gene Co-Expression Network 

Analysis Identifies Key Gene Modules in CCM 

and IS 

We employed WGCNA to further explore the 

molecular mechanisms in CCM and IS, aiming to 

identify disease-associated gene modules. 

WGCNA revealed gene co-expression networks 

for both CCM (Figure 2A) and IS (Figure 2B). 

Dendrograms illustrated gene divisions into 
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distinct modules, each represented by unique 

colors; substantial differences in gene co-

expression patterns between the two diseases were 

evident. 

Further analysis related gene modules to disease 

states. In CCM, the dark cyan, dark turquoise, and 

light green modules were significantly negatively 

correlated with disease status, while magenta and 

blue modules showed positive correlations (Figure 

2C). Conversely, in IS, dark red, blue, and 

magenta modules were positively correlated, 

whereas grey60 and yellow modules were 

negatively correlated (Figure 2D). The biological 

relevance of these modules was validated by 

assessing the correlation between module 

membership and gene significance. A strong 

correlation of 0.94 (p=1.3e-149) was found in the 

yellow module of CCM, and a correlation of 0.71 

(p=1.2e-13) in the green-yellow module of IS. 

These findings suggest consistent gene expression 

patterns within these modules under disease 

conditions. 

A comparative analysis was performed to identify 

shared gene modules between CCM and IS. The 

Venn diagram (Figure 2G) illustrated that 626 

modules (47.9%) are unique to CCM, 665 

modules (50.9%) are unique to IS, and 15 

modules (1.1%) are common to both diseases, 

potentially representing shared molecular 

mechanisms.

 

 
Figure 2: Co-Expression Network and Module Correlation Analysis in CCM and IS 

 

A: Dendrogram of gene co-expression networks in 

CCM samples. Genes are organized into distinct 

modules, each represented by a different color. 

B: Dendrogram of gene co-expression networks in 

IS samples. Genes are organized into distinct 

modules, each represented by a different color. 

C: Heatmap of gene module correlations with 

disease status in CCM. Dark cyan, dark turquoise, 
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and light green modules exhibit significant 

negative correlations, while magenta and blue 

modules show positive correlations. 

D: Heatmap of gene module correlations with 

disease status in IS. Dark red, blue, and magenta 

modules exhibit significant positive correlations, 

while grey60 and yellow modules show negative 

correlations. 

E: Scatter plot showing correlation between gene 

significance and module membership in the 

yellow module of CCM, with a correlation of 0.94 

(p=1.3e-149). 

F: Scatter plot showing correlation between gene 

significance and module membership in the green-

yellow module of IS, with a correlation of 0.71 

(p=1.2e-13). 

G: Venn diagram illustrating shared gene modules 

between CCM and IS.  

Functional Enrichment and Network Analysis 

of DEG and WGCNA Gene Unions 

By integrating 15 intersecting WGCNA genes 

with 102 intersecting DEGs, we identified 107 

unique genes, forming the DEG-WGCNA gene 

union. This union provides insights into potential 

key regulators of CCM and IS pathophysiology. 

Enriched GO terms indicated involvement in 

immune response regulation, signal transduction, 

and cell proliferation (Figure 3A, Supplementary 

Table 3). KEGG pathway analyses revealed 

pathways associated with the immune system and 

intracellular signaling cascades (Figure 3B, 

Supplementary Table 4). Further biological 

insights were derived by constructing a PPI 

network using STRING data (Figure 3C, 

Supplementary Table 5), which identified ten 

pivotal genes, including CD8A, CD19, CCR7, and 

IL7R, illustrating their key roles in protein 

interactions and cellular processes associated with 

disease.

 

 
Figure 3:Functional Enrichment and Network Analysis of DEG and WGCNA Gene Union 
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A: Gene Ontology enrichment analysis of DEG 

and WGCNA gene union, indicating roles in 

immune response regulation, signal transduction, 

and cell proliferation. 

B: KEGG pathway analysis of DEG and WGCNA 

gene union, highlighting pathways related to the 

immune system and intracellular signaling 

cascades. 

C: PPI network constructed using STRING data 

for the DEG and WGCNA gene union. Ten 

pivotal genes, including CD8A, CD19, CCR7, and 

IL7R, are highlighted as hub nodes in the 

network. 

Identification of Key Genes in CCM and IS 

Using LASSO and Boruta Algorithms 

To identify key genes associated with CCM and 

IS, we applied LASSO regression and the Boruta 

algorithm. In CCM, LASSO analysis revealed 

optimal Lambda values, identifying critical genes 

such as CCR7, CD19, and IL2RB (Figures 4A and 

4B). A similar analysis for IS identified key genes 

at an optimal Lambda of 0.04047 (Figures 4C and 

4D). The Boruta algorithm corroborated these 

results, highlighting significant genes like CD8A, 

GZMK, and IL7R (Figures 4E and 4F). The Venn 

diagram (Figure 4G) demonstrated overlap in key 

genes identified by both methods; notably, two 

genes were consistently recognized across all 

analyses as key in both CCM and IS, suggesting 

their significant roles in the diseases' 

pathophysiology.

 

 
Figure 4: Key Gene Identification in CCM and IS Using LASSO and Boruta Methods 
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A: Coefficients of genes in CCM as a function of 

lambda during LASSO regression analysis. 

Optimal lambda was determined to be 0.00038. 

B: Partial likelihood deviance versus log(lambda) 

in CCM, confirming the optimal lambda at 

0.000383. 

C: Coefficients of genes in IS as a function of 

lambda during LASSO regression analysis. 

Optimal lambda was determined to be 0.04047. 

D: Partial likelihood deviance versus log(lambda) 

in IS, confirming the optimal lambda at 0.04047. 

E: Z-scores of key genes identified in CCM using 

the Boruta algorithm. 

F: Z-scores of key genes identified in IS using the 

Boruta algorithm. 

G: Venn diagram showing overlap of key genes in 

CCM and IS identified through LASSO and 

Boruta methods. 

ROC Curve and Gene Expression Analysis of 

Key Genes 

The potential diagnostic value of identified key 

genes in CCM and IS was assessed using ROC 

curve analysis. Additionally, we examined the 

expression levels of these genes in various states 

to further understand their biological significance. 

For CCM diagnosis, the IL2RB gene 

demonstrated an AUC of 0.989, indicating nearly 

perfect discriminatory power. The CD6 gene, 

although slightly less effective, still showed 

substantial diagnostic capability with an AUC of 

0.867 (Figure 5A). In IS diagnosis, CD6 and 

IL2RB genes exhibited high diagnostic efficacy 

with AUCs of 0.931 and 0.841, respectively 

(Figure 5B). Gene expression analysis further 

supported these findings, showing significantly 

higher expression levels of IL2RB and CD6 in the 

CCM group compared to controls (Figure 5C), as 

well as elevated expressions in the IS group 

(Figure 5D). 

 
Figure 5: Diagnostic Potential and Expression Analysis of Key Genes in CCM and IS 

 

A: ROC curve for IL2RB and CD6 in diagnosing 

CCM. The AUC for IL2RB is 0.989, and for CD6 

is 0.867. 

B: ROC curve for IL2RB and CD6 in diagnosing 

IS. The AUC for CD6 is 0.931, and for IL2RB is 

0.841. 

C: Box plots showing the expression levels of 

IL2RB and CD6 in CCM and control groups. 
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Both genes are significantly upregulated in CCM. 

D: Box plots showing the expression levels of 

IL2RB and CD6 in IS and control groups. Both 

genes are significantly upregulated in IS. 

Immune Cell Infiltration Analysis 

To delve deeper into the roles of IL2RB and CD6 

genes in CCM and IS, we analyzed immune cell 

infiltration in the two cohorts. In the CCM group, 

activated NK cells and CD8 T cells showed 

significant proportion increases (Figure 6A, 

Supplementary Table 6), with activated NK cells 

and CD8 T cells substantially more prominent 

than in the control group. Additionally, there was 

an increase in monocyte and neutrophil 

proportions, though not reaching statistical 

significance. In IS, monocyte and neutrophil 

proportions were significantly elevated (Figure 

6B, Supplementary Table 7), alongside increased 

levels of activated NK cells and CD4 memory T 

cells. These findings suggest that IL2RB and CD6 

may exert their effects on CCM and IS 

pathophysiology through modulation of specific 

immune cell activities. The increase of activated 

NK cells and CD8 T cells in CCM might be 

associated with the high expression of IL2RB and 

CD6, whereas the prominent monocyte and 

neutrophil presence in IS indicates these genes 

may play crucial roles in inflammatory responses 

and immune regulation. 

 
Figure 6: Immune Cell Infiltration and Correlation with Key Genes in CCM and IS 
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A: Relative proportions of different immune cell 

types in CCM. Activated NK cells and CD8 T 

cells show significant increases compared to 

controls. 

B: Relative proportions of different immune cell 

types in IS. Monocytes and neutrophils show 

significant increases compared to controls. 

C: Heatmap showing the correlation between the 

expression of IL2RB and CD6 genes and various 

immune cell types in the CCM group. 

D: Heatmap showing the correlation between the 

expression of IL2RB and CD6 genes and various 

immune cell types in the IS group. 

Discussion 

This study extensively characterizes the molecular 

landscapes of CCM and IS, highlighting both 

unique and shared features through 

comprehensive gene expression profiling and 

network analysis. The discovery of distinct DEGs 

across both conditions underscores the specific 

molecular environments and intrinsic 

pathophysiological processes underpinning these 

cerebrovascular diseases. These distinctions are 

crucial, as they offer potential insights into 

tailored therapeutic approaches specific to each 

condition. 

However, the identification of shared DEGs 

points towards underlying common pathways that 

may influence similar clinical manifestations or 

contribute to shared risk factors. These 

overlapping pathways, particularly those involved 

in vascular integrity and immune response, 

suggest that some therapeutic strategies might 

benefit both CCM and IS, potentially offering 

dual benefits in disease management. 

The use of WGCNA allowed for the identification 

of disease-associated gene modules, highlighting 

gene networks that exhibit coordinated changes in 

expression. These modules illustrate complex 

interactions and biological processes specific to 

each disease, while also pointing out shared 

motifs that could be crucial in understanding their 

pathophysiological overlaps. 

Functional enrichment and PPI network analyses 

pinpoint immune regulation and signal 

transduction as pivotal elements in both diseases. 

Hub genes such as CD8A, CD19, CCR7, and 

IL7R emerge as central figures in these pathways, 

representing potential biomarkers for disease 

progression or targets for novel therapeutic 

interventions. 

Utilization of LASSO and Boruta algorithms for 

refining key gene identification ensures 

robustness in our findings, with ROC analysis 

affirming the potential diagnostic power of genes 

like IL2RB and CD6. These genes not only aid in 

distinguishing between disease states but could 

also guide the development of predictive models 

for patient stratification. 

The immune cell infiltration analysis sheds light 

on the altered immune landscape in CCM and IS, 

with increased NK and T cells observed in CCM, 

and a heightened presence of monocytes and 

neutrophils in IS. These findings emphasize the 

significant role of immune mechanisms, 

suggesting that targeting immune responses might 

offer therapeutic benefits. 

Overall, our study advances the understanding of 

CCM and IS at a molecular level, providing a 

foundation for future research focused on 

functional validation and the exploration of shared 

and distinct pathways. This knowledge can pave 

the way for innovative therapeutic strategies, 

potentially improving clinical outcomes for 

individuals affected by these challenging 

cerebrovascular disorders. 

Conclusions 

Our integrative approach delineates the molecular 

landscapes of CCM and IS, emphasizing the 

critical roles of immune response and signaling 

mechanisms. Key genes and shared pathways 

identified offer insights into disease pathogenesis 

and potential therapeutic strategies. Further 

validation and exploration of these findings, 

particularly through functional studies, could lead 

to the development of targeted interventions, 

improving outcomes for CCM and IS patients. 
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