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Abstract:  

On-road vehicle emissions are one of the main sources of air pollutants and it is also one of the most 

difficult pollution sources to evaluate quantitatively. As a widely used mobile source emission prediction 

model worldwide, MOVES lacks in-depth analysis of the selection basis for localizing geographic region 

parameters in software simulations for non-U.S. regions. Taking Taiyuan City as an example, the emissions 

of different pollutants from motor vehicles are obtained by selecting eight cities with different latitudes and 

altitudes as geographic regions for simulation calculation under the condition that other parameters are set 

unchanged, and the correlations between different pollutant emissions and latitudes and altitudes of the 

selected geographic regions are analyzed using sensitivity and Spearman correlation coefficient, 

respectively. The results show that there is no significant correlation between altitude and the emissions of 

CO, HC, NOx, and PM2.5 when latitude is similar; there is no significant correlation between latitudes and 

the emissions of HC, NOx, and PM2.5 when altitude is similar, but there is a significant correlation with CO 

emission. Therefore, when selecting the simulated geographic region in the localization of MOVES 

parameters, the altitude factor can be disregarded if the latitude is similar, but in the case of similar altitudes, 

it is necessary to select the city with similar latitude as the simulated geographic region at the same time. 

This finding could help the non-U.S. regions to obtain the appropriate geographic region selection that is 

closer to the real emission results when using the MOVES software. 

Keywords: vehicle emission, MOVES model, geographic region selection, sensitivity analysis, 

correlation analysis 

Introduction 

 

The significant increase in motor vehicle 

ownership has greatly facilitated people's daily 

lives, but it has also brought about unavoidable 

environmental problems. According to the China 

Mobile Source Environmental Management 

Annual Report (2023) released by the Ministry of 

Ecology and Environment, the total emissions of 

four pollutants (CO, HC, NOx and PM) from 

motor vehicles nationwide in 2022 were 14,662 

million tons, of which automobile emissions 

accounted for more than 90% of the CO, HC, NOx 

and PM, which was the main contributor to the 

total air pollutant emissions
0
. Automobile 

emissions have become a global hazard, posing a 

serious threat to the human living environment. 

Recent global commitments like the Paris 

Agreement have established ambitious carbon 
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reduction targets, and placed transportation at the 

forefront of national strategies to achieve them
2
. 

As one of the world's largest carbon emitters, 

China is taking more aggressive policies and 

measures to reduce transportation emissions. In 

order to assist decision-makers in formulating 

effective emission reduction programs, Accurate 

quantification of transportation-related vehicle 

emissions is essential. 

MOtor Vehicle Emission Simulator (MOVES), 

developed by the U.S. Environmental Protection 

Agency (EPA), is the most widely used emissions 

calculation software in the United States, and is 

also widely used abroad. Compared with other 

major models for predicting vehicle emissions 

such as MOBILE, COPERT, IVE, and EMFAC, 

the MOVES model stands out for its ability to 

predict a wide range of pollutant emissions under 

actual driving conditions by inputting the 

localized parameters in an open data management 

system and provides a variety of application 

scenarios and analysis at different levels
3Error! 

Reference source not found.
. The latest version of 

MOVES released by the EPA is MOVES5, which 

has been greatly improved in terms of model 

performance enhancement and functionality 

improvement compared to previous versions, with 

more accurate and adaptable calculations, 

representing the latest technology in emission 

model development. The accuracy of emission 

estimation using MOVES depends on all 

parameter inputs, both traffic-related and non-

traffic-related. When using MOVES software to 

estimate emissions from other areas that are not 

covered, it is first necessary to select the 

appropriate default geographic region. However, 

how to select a default geographic area that can 

get closer to the actual emissions has rarely been 

analyzed by researchers, and many literature 

choose to ignore this step or leave it unexplained, 

as a result, the latter researchers have fewer bases 

to refer to in selecting the appropriate default 

geographic regions when using MOVES to 

simulate emissions in non-software-covered areas 

Table 1 provides an overview of the state-of-the-

art literature regarding the selection of default 

geographic areas when using the MOVES model 

for non-software covered areas. 

 

Table 1 The simulated cities and the selection basis of the corresponding default geographic regions in 

MOVES software. 

Research 

City 

Vehicle Type Corresponding 

Geographic 

Region 

Basis for Selection Reference 

Xi'an Passenger Car Georgia County Average annual 

precipitation, 

Altitude, Latitude, 

Longitude, Average 

Temperature, Relative 

Humidity 

4 

Xi'an All Types Georgia County Latitude, Climate, 

Altitude 

6 

Beijing Passenger Car, Taxi, 

Middle-Duty Vehicle, 

Heavy-Duty Vehicle, 

Light-Duty Truck, 

Middle-Duty Gasoline 

Truck, Middle-Duty 

Diesel Truck, Heavy-

Duty Truck 

Washington D.C Longitude, Latitude 7 

Beijing Light-Duty Vehicle Not Mentioned Not Mentioned 8 

Shenzhen Passenger Car, 

Passenger Truck, Other 

Buses, Transit Bus, 

Orange County Temperature, 

Humidity, Altitude, 

Latitude 

9 
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Medium and Heavy 

Vehicle 

Shenzhen All Types Orange County Latitude, Climate 10 

Shenzhen Truck, Passenger Car Orange County Climate 11 

Shanghai Truck Not Mentioned Slope, Temperature, 

Humidity 

12 

Shanghai Truck Not Mentioned Climate, Annual 

Temperature, Annual 

Humidity 

13 

Shanghai Light-Duty Vehicle Not Mentioned Not Mentioned 14 

Yunnan Passenger Vehicle Not Mentioned Not Mentioned 15 

Shaanxi Heavy-Duty Diesel 

Truck 

State of 

Missouri 

Latitude, Altitude, 

Climate, 

Precipitation, 

Humidity, 

Temperature 

16 

Shijiazhuang All Types New York 

County 

Latitude, Climate 17 

Hyderabad, 

India 

Light-Duty Vehicle Not Mentioned Temperature and 

Relative Humidity 

18 

 

As can be seen from Table 1, most of the cities 

studied in the references are from China and a 

small number of Indian cities, which have not yet 

developed their own mature simulation software 

for motor vehicle pollutant emissions, so when 

using the MOVES model to make predictions for 

areas not covered by the software, the first step is 

to select the default geographic regions. The 

majority of corresponding geographic regions in 

the literature are selected based on the similarity 

of geographic and meteorological conditions such 

as latitude, altitude, climate, temperature, 

humidity, and precipitation. Since climate and 

average annual precipitation are mainly affected 

by the latitude of the region, in addition, the actual 

temperature and relative humidity of the simulated 

area can be modified and inputted in the model's 

open data management system as meteorological 

information parameters. From the above analysis, 

it can be concluded that the analysis of the basis 

for selecting the appropriate default geographic 

regions for non-software covered areas mainly 

falls on two factors: latitude and altitude. 

In previous literature studies, when motor vehicle 

pollutant emissions from non-software covered 

areas are estimated in the MOVES model, most 

are directly selecting the software default region 

with similar latitude and altitude to the simulated 

city, and then the simulated city is compared with 

the relevant climate and environmental conditions 

of the selected software default region (as shown 

in the basis for selection column of Table 1); 

however, when the similarities of the two different 

factors of latitude and altitude between the 

simulated city and the selected software default 

region are not consistent, should we focus on the 

latitude factor or the altitude factor? How do 

different similarities in latitude and altitude 

between the simulated city and the software 

default region affect the calculated motor vehicle 

emissions, respectively? And so on, these are the 

issues that need to be considered in the selection 

of default geographical regions for non-software 

covered areas. As a matter of fact, these issues 

have not been studied in depth in the previous 

literature. To further explore the factors that need 
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to be considered by the MOVES model in 

selecting an appropriate default geographic region 

for non-software covered areas, Taiyuan was 

taken as the simulated area and parameter inputs 

for the model were developed based on field 

surveys and data collected by local agencies; with 

other parameter inputs remain unchanged, eight 

default geographic regions in the MOVES model 

with different degrees of similarity in  latitude and 

altitude were chosen for motor vehicle pollutant 

simulations, and how latitude and altitude affect 

the choice of default geographic region was 

analyzed, so as to obtain the vehicle emission 

calculation results closer to the simulated area. 

The remainder of this paper is organized as 

follows: the second section describes the 

parameter input process during the use of the 

software, including geographic region selection, 

motor vehicle information and meteorological 

information, etc., with a focus on eight different 

geographic regions selected for different latitudes 

and altitudes; the third section displays the 

different pollutant emissions calculated using 

eight different default geographic regions, the 

results calculated by the MOVES software for the 

default geographic region closest to the latitude 

and altitude of Taiyuan are compared with the 

emissions of Taiyuan calculated by the top-down 

method, then the correlation between latitude, 

altitude factors affecting the choice of default 

geographic region for the prediction of non-

software covered areas and pollutant emissions 

are analyzed using sensitivity and Spearman 

correlation coefficients separately; the fourth 

section concludes the main work and discoveries 

of this paper. 

1. Methodology 

This section describes the process of developing 

the parameters for estimating vehicle emissions in 

Taiyuan using the MOVES software, including 

the acquisition process of various traffic-related 

and non-traffic-related parameters, which is 

characterized by considering eight different 

matching cities in the selection of default 

geographic regions. 

2.1  Calculation principle of MOVES 

MOVES is an emission modeling system that 

estimates emissions for mobile sources at the 

national, county, and project level for criteria air 

pollutants, greenhouse gases, and air toxics. The 

version of the model adopted in this paper is 4.0, 

and the vehicle emission inventory in the software 

is the total amount of pollutants emitted into the 

atmosphere from different types of vehicles in a 

certain time-space span, calculated according to 

the bottom-up approach by Equation 1: 

      ∑ ∑ ∑ (                     

         )     

where,  is the vehicle age; 

  is the vehicle type; 

  is the fuel type; 

  is the pollutant type; 

      is total amount of pollutant   emitted by the 

vehicle type   (kg); 

         is the total number of  -year-old  -type 

vehicles using  -class fuel (veh); 

         is the average annual mileage of  -year-

old  -type vehicles using  -class fuel (mile); 

          is the emission factor for  -year-old  -

type vehicles using  -class fuel (kg/(mile·veh)). 

The paper estimates motor vehicle pollutants (CO, 

HC, NOx, and PM2.5) in Taiyuan City on a city-

area basis, so the county scale in MOVES is 

adopted for simulation. 

2.2  Parameter localization process of MOVES 

for Taiyuan City 

2.2.1  Selection of appropriate matching city 

In order to make the motor vehicle pollutant 

simulations more accurate, it is necessary to select 

the U.S. cities in the model that match the 

geographic and climatic characteristics of 

Taiyuan. When selecting a geographic area, 

previous literature typically starts by choosing a 

U.S. city at a similar latitude and then comparing 

other geographic and climatic characteristics of 

that city with those of the area to be simulated, but 

there is no in-depth analysis of the effect of 

latitude or other geographical and climatic 

characteristics on simulation results.  

As stated in the literature review section, the 

selection of geographic regions is mainly affected 

by latitude and altitude two factors. In order to 

explore the effects of the main geographic and 

climatic factors (latitude and altitude) on motor 

vehicle pollutant emissions in Taiyuan City, this 
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study used Google Maps to screen cities in the 

United States that are similar to Taiyuan in terms 

of latitude but differ in altitude: Gray County, 

Kansas (44 meters higher than the altitude of 

Taiyuan), Harper County, Kansas (367 meters 

lower than the altitude of Taiyuan), Harvey 

County, Kansas (453 meters lower than the 

altitude of Taiyuan), Baca County, Colorado (509 

meters higher than the altitude of Taiyuan), and 

Alamosa County, Colorado (1,499 meters higher 

than the altitude of Taiyuan); At the same time, 

cities with similar altitudes but different latitudes 

to Taiyuan were also selected: Gray County, 

Kansas (about 40 minutes difference in latitude 

from Taiyuan), Glasscock County, Texas (about 5 

degrees difference in latitude from Taiyuan), and 

Daniels County, Montana (about 11 degrees 

difference in latitude from Taiyuan). Table 2 

shows the specific geographic and climatic 

characteristics of Taiyuan City and the simulated 

regions.

 

Table 2 Geographic and climatic characteristics of Taiyuan City and the simulated regions. 

City Latitud

e 

Longitude Altitude Climatic Average 

Annual 

Tempera

ture 

Rainy 

Season 

Average 

Annual 

Precipitation 

Taiyuan 37°50′ 112°30′ 800m Warm 

Temperate 

Continental 

Monsoon 

Climate 

9.5℃ June- 

September 

456 mm 

Gray 37°40′ 100°26′ 844m Temperate 

Continental 

Climate 

14.5℃ May- 

September 

578.8mm 

Harper 37°11′ 98°01′ 433m Temperate 

Continental 

Climate 

11.7℃ May- 

September 

834.7 mm 

Harvey 38°04′ 97°34′ 347m Temperate 

Continental 

Climate 

11.7℃ May- 

September 

834.7 mm 

Baca 37°23′ 102°32′ 1,309m Temperate 

Continental 

Humid Climate 

15.3℃ May- 

September 

480.6 mm 

Alamosa 37°28′ 105°52′ 2,299m Temperate 

Continental 

Humid Climate 

15.25℃ May- 

September 

425.9 mm 

Glasscock 31°51′ 101°28′ 801m Temperate 

Climate 

15℃ May, 

September

, October 

347.5mm 

Daniels 48°46′ 105°43′ 818m Temperate 

Grassland 

Climate 

12℃ May-July 374.6mm 

 

This data is derived from 

https://www.timeanddate.com/. 

2.2.2  Input of motor vehicle information in 

Taiyuan City 

The motor vehicle information includes vehicle 

age, vehicle type, fuel, ownership of each type, 

and Vehicle Miles Traveled (VMT)
19

. 

(1) Localization of vehicle age, vehicle 

type and fuel 

Motor vehicle age distribution refers to the 

percentage of the actual number of different age 

vehicles within a certain type to the total number 

of vehicles in that type, the sum of the age 

https://www.timeanddate.com/
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distribution for the same type vehicles is 1. The 

calculation of vehicle age distribution requires a 

large amount of basic data, but it is difficult to 

obtain complete statistical data in most cities in 

China, and Taiyuan is no exception. Therefore, 

based on the assumption that the age distribution 

of each vehicle type in Taiyuan is similar to that 

of Shanxi province, this paper inquires about new 

car registration statistics for each year through the 

relevant data platform of the National Bureau of 

Statistics and obtains the vehicle statistical data by 

consulting the Shanxi Province Statistical 

Yearbook. Combined with the above data and 

based on the Weibull distribution, a vehicle 

survival curve model was established to calculate 

the vehicle age distribution of each type in Shanxi 

Province, and the results are used as the age 

distribution data of actual road vehicles in 

Taiyuan. It is worth noting that in the MOVES 

model, the default maximum vehicle age is 30 

years, but according to the actual situation in 

China, the age of vehicles is usually within 15 

years, so the table lists the 15-year age 

distribution for Taiyuan City, as shown in Table 3. 

The vehicle survival curve model based on 

Weibull distribution is developed with the 

following Equations 2-4
20

: 

                   ( ) （2） 

    ∑ ∑           （3） 

    ( )      (   )     ( ) （4） 

where,   is vehicle age;  is vehicle type; k is year; 

        is the vehicle holdings of  -type vehicles of 

age   in the year  ; 

       is the number of newly registered vehicles 

of type   in the     year; 

    
( ) is the survival rate of  -type vehicles of age 

  in the   year; 

    is the vehicle holdings in the year  ; 

    
(   ) is the number of  -type vehicles still in 

normal use in the year    ; 

    
( ) is the number of newly registered  -type 

vehicles in the year  , ( =0). 

 

Table 3 Age distribution data of actual road vehicles in Taiyuan City in 2022. 

Age 

Type 

Motorc

ycle 

Passeng

er Car 

Passenge

r Truck 

Light 

Commercial 

Truck 

Other 

Buses 

Transi

t Bus 

Schoo

l Bus 

Refuse 

Truck 

Heavy-

Duty 

Truck 

0 0.02 0.06 0.02 0.02 0.01 0.02 0.01 0.05 0.03 

1 0.12 0.08 0.12 0.12 0.11 0.10 0.11 0.12 0.12 

2 0.11 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 

3 0.09 0.11 0.13 0.13 0.11 0.14 0.13 0.08 0.11 

4 0.07 0.09 0.11 0.12 0.13 0.13 0.14 0.06 0.10 

5 0.06 0.10 0.08 0.13 0.09 0.12 0.09 0.05 0.08 

6 0.05 0.09 0.06 0.07 0.06 0.09 0.05 0.04 0.07 

7 0.05 0.07 0.04 0.05 0.05 0.1 0.07 0.03 0.03 

8 0.09 0.08 0.06 0.06 0.06 0.07 0.07 0.08 0.07 

9 0.06 0.06 0.06 0.05 0.05 0.03 0.05 0.09 0.07 

10 0.07 0.04 0.06 0.04 0.04 0.04 0.04 0.07 0.04 

11 0.06 0.03 0.04 0.02 0.04 0.02 0.04 0.06 0.04 

12 0.04 0.02 0.04 0.02 0.05 0.02 0.03 0.05 0.04 

13 0.02 0.02 0.01 0.02 0.02 0 0.02 0.03 0.02 

14 0.02 0 0.02 0 0.02 0 0.02 0.04 0.02 

15 0.07 0.03 0.03 0.03 0.04 0 0.01 0.03 0.04 

 

Fuel type is an important factor affecting the 

emission of pollutants from motor vehicles, and 

the fuel types include gasoline and diesel, etc. The 

data related to fuel mainly refers to the 

corresponding data in the national standards for 

gasoline and diesel in the MOVES model. 
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According to the local standard of Shanxi 

Province "M5-M15 Methanol Gasoline" (DB14/T 

92-2008), the fuel type that is closest to the given 

fuel component of MOVES is selected. After data 

conversion and index type adjustment, the RVP of 

M5 and M15 methanol gasoline are 6.526 psi (for 

summer: March 16 - September 15) and 8.702 psi 

(for winter: September 16 - March 15 of the 

following year). The boiling range T50 and T90 

are 120 °C and 190 °C, respectively, and the 

temperature forms required for conversion to the 

MOVES model are 248 °F and 374 °F. The E200 

is 26.39 and the E300 is 73.19, the volume 

percentages of benzene, olefin and aromatic 

hydrocarbons are 1, 28 and 40, respectively, the 

volume fraction of MTBE (oxygen-containing 

compounds) in gasoline is 15.0139%. 

(2) Localization of motor vehicle 

ownership 

The number of motor vehicles of different types in 

Taiyuan in 2022 was derived from the on-site 

surveys and review of relevant materials, as 

shown in Table 4. 

 

Table 4  Motor vehicle ownership of different types in Taiyuan in 2022. 

Categorization Instruction Vehicle Type Number 

Passenger 

Vehicle 

Micro Length≤3,500mm, Engine 

Displacement≤1 Liter 

Passenger Car 1,546,521 

Small Length<6,000mm and Seating 

Capacity≤9 People 

Medium Length < 6,000mm and Seating 

Capacity for 10-19 People 

Other Buses, School 

Bus 

2,236 

Heavy Length≥6,000mm or Seating 

Capacity≥20 People 

Transit Bus 5,096 

Truck Micro Length≤3,500mm, Weight≤1,800kg, 

excluding low-speed trucks 

Passenger Truck 123,352 

Light Maximum Designed Speed≤50 km/h, 

Engine Displacement≤50 ml, and Low-

Speed Trucks 

Medium Length≥6,000mm or Weight≥4,500kg 

and ≤12,000kg 

Light Commercial 

Truck, Refuse Truck 

3,207 

Heavy Weight≤12,000kg. Heavy-duty Truck 83,708 

Motorcycle Regular Maximum Designed Speed>50 km/h or 

Engine Displacement>50 ml 

Motorcycle 124,467 

Light 

weight 

Maximum Designed Speed≤50 km/h or 

Engine Displacement≤50 ml 

 

(3) Localization of VMT 

Vehicle Miles Traveled (VMT) refers to the total 

mileage traveled by all vehicles in a given area at 

a given time
21

. This indicator not only reflects the 

traffic flow of motor vehicles, but also the burden 

on the entire highway system, and is directly 

related to energy consumption and emissions. 

According to the “Technical Guidelines for the 

Preparation of Air Pollutant Emission Inventory 

for Road Motor Vehicles” (hereinafter referred to 

as “the Guidelines”), the average annual Vehicle 

Kilometers Traveled (VKT)22 of each vehicle 

type is obtained, and then multiplied by the 

ownership of each vehicle type in 2022, the total 

VMT by each vehicle type in 2022 is obtained as 

shown in Table 5
22

.

 

Table 5 VKT and VMT data for all types of vehicles in 2022. 

MOVES Emission Source ID Type of Motor Vehicle VKT 

(km/vehicle) 

VMT 

(km 10
3
) 

11 Motorcycle 6,000 871,269 

21 Passenger Car 18,000 13,918,689 
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31 Passenger Truck 30,000 3,083,800 

32 Light Commercial Truck 35,000 217,700 

41 Other Buses 31,300 156,520 

42 Transit Bus 60,000 509,600 

43 School Bus 31,300 156,520 

51 Refuse Truck 35,000 217,700 

52,53 Heavy-duty Truck 75,000 12,556,200 

 

2.2.3  Localization of meteorological information 

The meteorological information in MOVES 

mainly includes temperature and relative humidity 

data in the study area. Temperature has a 

significant effect on the emission results of certain 

pollutants from vehicles
23

, and relative humidity 

also significantly affects the concentration of 

particulate matter
24

. Monthly average temperature 

and relative humidity information for Taiyuan in 

2022 is available on the China weather website, as 

shown in Figure 1. 

 

Figure 1: Average temperature and relative humidity of Taiyuan in 2022. 

 

3. Results 

3.1  Results of MOVES software simulation 

In this paper, based on the MOVES model, five 

cities with similar latitude but different altitude to 

Taiyuan and three cities with similar altitude but 

different latitude to Taiyuan were selected as the 

simulated geographic regions of the software to 

estimate the pollutant emissions, the calculation 

results are shown in Figures 2 and 3.
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Figure 2: Comparison of the MOVES model simulation results under altitude change. 

 

The calculated emissions of different pollutants 

from motor vehicles are not the same for the 

simulated cities at the similar latitudes but at 

different altitudes, as shown in Figure 2. 

According to the statistical graph, as the altitude 

difference between the simulated area and 

Taiyuan City changes from small to large (the 

cities on the horizontal coordinate are arranged in 

this order), the CO emissions show a trend of 

increasing first and then decreasing, and finally 

tended to be stable, with a change range of 1,718 

t; the NOx emissions show a continuous 

downward trend with a slight upward fluctuation 

in the middle of the process, with a change range 

of 248 t; the emissions of HC and PM2.5 show 

minimal variation, with fluctuation ranges not 

exceeding 3% and 7%, respectively. The results 

show that the emissions of CO and NOx have 

obvious change trend, while the emissions of HC 

and PM2.5 are not significantly affected by 

altitude. The emissions of CO are the largest, 

serving as the primary pollutant, which is 9.66 

times more than that of NOx, 58.06 times more 

than that of HC, and 397.06 times more than that 

of PM2.5 on average. 

 

 

Figure 3: Comparison of the MOVES model simulation results under latitude change. 
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The calculated emissions of different pollutants 

from motor vehicles are different for the 

simulated cities at the similar altitudes but at 

different latitudes, as shown in Figure 3. 

According to the statistical graph, as the latitude 

difference between the simulated area and 

Taiyuan City changes from small to large, the CO 

emissions show a trend of increasing initially and 

then decreasing, with a change range of 2,396 t; 

the NOx emissions show a trend of decreasing first 

and then increasing; the emissions of HC and 

PM2.5 show minimal variation, with fluctuation 

ranges not exceeding 2% and 4%, respectively. 

The results show that the emissions of CO and 

NOx have obvious change trend, and the 

emissions of HC and PM2.5 are not significantly 

affected by latitude. The emissions of CO are the 

largest, serving as the primary pollutant, which is 

9.07 times more than that of NOx, 55.98 times 

more than that of HC, and 378.99 times more than 

that of PM2.5 on average. 

3.2  Comparison with the top-down approach 

calculation results 

The top-down approach in the application of 

motor vehicle emissions quantification is a 

method of calculating emissions based on VMT 

and vehicle emission factors
25

. This approach is 

based on the aggregation of emissions from 

individual vehicles or small groups of vehicles to 

estimate the total emissions for a larger area or 

fleet. It is commonly used in air quality 

management and transportation planning to 

understand the impact of vehicle emissions on air 

quality at the macro level. Its calculation equation 

is as follows: 

               
       

where,    is the annual emissions of CO, CO2, 

NOx, and PM2.5 for  -type vehicles, t; 

   is the ownership of  -type vehicles in the area, 

vehicle; 

   is the emission factor for  -type vehicles (data 

from the “Guidelines”), g/km; 

   is the annual average vehicle kilometers 

traveled (VKT) for  -type vehicles, km/vehicle. 

Gray County, Kansas, as the closest city to 

Taiyuan in altitude and latitude among the seven 

cities, was selected as the simulated geographic 

region for MOVES to estimate motor vehicle 

pollutant emissions, and the results are compared 

with the pollutant emission calculations of 

Taiyuan based on the top-down approach, as 

shown in Table 6. 

 

Table 6 Comparison of the results of different calculation methods. 

Methods 

Pollutants 
CO(10

4 t) HC(10
4 t) NOx(10

4 t) PM2.5(10
4 t) 

The top-down approach 31,395.41 962.54 9,428.40 303.40 

The MOVES model 23,965.96 437.52 2,732.87 65.53 

 

As can be seen from Table 6, the annual emissions 

of motor vehicle pollutants CO, HC, NOx and 

PM2.5 in Taiyuan in 2022, calculated by the top-

down approach, are approximately 1.31, 2.2, 3.45 

and 4.63 times the emissions calculated by the 

MOVES model for CO, HC, NOx, and PM2.5, 

respectively. In similar studies, Yao et al
26 

estimated vehicle emissions using the MOVES 

model and the top-down approach, respectively, 

and also pointed out that the results of the 

MOVES model were relatively small, with a 

difference of 1.26 times for CO, 3.4 times for 

NOx, and 4.37 times for PM2.5, which is in 

accordance with the results in this paper. The 

main reason for the discrepancy between the 

results from the MOVES model and the top-down 

approach may be that most vehicles in Taiyuan 

have already met the National VI emission 

standard by the test year 2022, while the emission 

factors of different vehicle types used in the top-

down approach are derived from the “Guidelines”, 

which only counts the emission factors of vehicles 

that are National V emission standard and below, 

as a result, the pollutant emission data obtained by 

using the top-down approach are larger than the 

actual emission data. On the other hand, the 

MOVES model can more accurately reflect the 

actual motor vehicle pollutant emissions in 

Taiyuan in 2022 because it incorporates more 

local data on vehicle activity levels and other 

emission-related parameters. 

4. Discussion 
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4.1  Impacts of altitude and latitude on 

emissions 

When using the MOVES software to simulate 

pollutant emissions in non-U.S. regions, it is 

common practice to input local meteorological 

data (such as temperature, humidity, etc.) to 

model the emission process. Many researchers 

adopt this approach for emission simulations but 

often overlook the influence of geographic factors 

like latitude and altitude on emissions. In reality, 

meteorological conditions directly determine the 

results of emission calculations, and altitude and 

latitude are important factors in determining these 

meteorological conditions. Therefore, ignoring 

these factors may lead to biases in the simulation 

results, especially in the case of complex 

geographic conditions or inaccurate 

meteorological data. 

The impact of altitude on emissions are mainly 

reflected in air density and temperature variations: 

As altitude increases, air density gradually 

decreases. Changes in air density affect engine 

combustion efficiency, thereby influencing 

vehicle emissions; Higher-altitude regions 

typically have lower temperatures, especially at 

night or during winter. Low-temperature 

environments affect cold-start engine emissions 

and increase the amount of pollutant emissions 

during engine startup. 

The influence of latitude on emissions mainly 

manifests in the following ways: (1) Solar 

radiation: Latitude determines the intensity and 

seasonal variation of solar radiation. High-latitude 

regions receive weaker solar radiation, 

particularly in winter, leading to lower 

temperatures that affect vehicle emission 

characteristics. For example, colder environments 

prolong the time required for engines to reach 

optimal operating temperatures, increasing cold-

start emissions. (2) Seasonal variations: Higher-

latitude regions exhibit more pronounced seasonal 

changes, with long, harsh winters and short, mild 

summers. These variations influence vehicle 

operation patterns and emission characteristics. 

For instance, vehicles may undergo more frequent 

cold starts in winter, while high temperatures in 

summer may result in increased evaporative 

emissions. (3) Weather patterns: Latitude also 

affects regional weather patterns, such as 

precipitation, wind speed, and humidity. These 

meteorological conditions not only directly impact 

emissions, but also influence the dispersion and 

deposition of pollutants. 

In conclusion, while directly inputting 

meteorological data may suffice for general 

emission simulations, accounting for altitude and 

latitude becomes crucial in cases requiring higher 

precision or where meteorological data is 

unreliable. By integrating geographic factors with 

meteorological data, a more comprehensive 

understanding of real-world emissions can be 

achieved, providing a more scientific basis for the 

formulation of pollutant control policies. 

4.2  Parameter sensitivity analysis 

Sensitivity analysis is a method for in-depth study 

and quantification of the sensitivity of a model or 

system’s output data to the changes in input 

parameters, through which it is possible to 

understand the degree of influence of different 

variable parameters on the results
27

. Particularly 

in the environmental science and engineering 

fields, sensitivity analysis can help researchers to 

identify and analyze which factors have the 

greatest impact on the emission of environmental 

pollutants. In previous literature, some scholars 

have used sensitivity analysis to investigate the 

effect of each input parameter on different 

pollutant emission factors at the micro level of 

MOVES; However, no one has analyzed the effect 

of geographic region selection parameters on 

different pollutant emission factors when using 

MOVES to simulate pollutant emissions in non-

U.S. regions, since the selection of geographic 

regions is mainly influenced by altitude and 

latitude (the reasons for which have been analyzed 

in the introduction section). Therefore, this paper 

quantifies the influence of the two indirect 

parameters, altitude and latitude, which determine 

geographic region selection, on pollutant emission 

factors by sensitivity analysis. By calculating and 

comparing the sensitivity coefficients of these 

parameters, it is possible to evaluate more 

accurately their role in influencing the pollutant 

emission process. The method of calculating the 

sensitivity coefficient used in this paper is shown 

in Equation 6: 

    
   ⁄

   ⁄
     

where,     is the sensitivity coefficient; 

  is the pollutant emission factor; 
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   is the change of pollutant emission factor; 

  is the input parameter; 

   is the change of the input parameter. 

When |SAF|>1, the change of the parameter has a 

great impact on the pollutant emission factor, so it 

is called a sensitivity coefficient; when 

0.1<|SAF|≤1, the change of the parameter has a 

certain impact on the pollutant emission factor, so 

it is called a general sensitivity coefficient; when 

|SAF|≤0.1, the change of the parameter has a 

small impact on the pollutant emission factor, so it 

is called a non-sensitivity coefficient. When SAF 

> 0, the emission factor is positively correlated 

with the change of parameter, while when SAF < 

0, the emission factor is negatively correlated with 

the change of parameter. 

In this paper, the average values of sensitivity 

coefficients of altitude and latitude to different 

pollutant emission factors are calculated for 

different simulated region selections, respectively, 

and the results are shown in Table 7.

 

Table 7 Sensitivity coefficients of altitude and latitude to different pollutant emission factors for 

different simulated region selections. 

 Simulated 

Regions 

Latitude Altitude(m

) 

Sensitivity Coefficient (SAF) 

CO HC NOx PM2.5 

Different 

Altitude 

Gray County 37°40′ 844 -0.795 -0.001 -0.030 -0.001 

Harper County 37°11′ 433 

Harvey County 38°04′ 347 

Baca County 37°23′ 1,309 

Alamosa County 37°28′ 2,299 

Different 

Latitude 

Gray County 37°40′ 844 -141.569 0.330 10.073 0.080 

Glasscock County 31°51′ 801 

Daniels County 48°46′ 818 

 

As can be seen from Table 7, the changes in 

altitude have a great impact on the emission 

factors of CO, but relatively small impact on the 

emission factors of HC, NOx, and PM2.5. 0.1<|-

0.7950|≤1, therefore, the altitude is a generally 

sensitivity parameter relative to the CO emission 

factor, and the emission factors of CO are 

negatively correlated with changes in altitude, 

which means that with the increase of altitude, the 

emission factors of CO show a decreasing trend. 

The changes in latitude have a great influence on 

the emission factors of CO and NOx, while it has a 

certain influence on the emission factors of HC, 

and in comparison, the influence on the emission 

factors of PM2.5 is negligible. Therefore, latitude 

is a sensitivity parameter for CO and NOx, and 

more specifically, the changes in latitude have a 

much greater impact on the emission factors of 

CO than that of NOx, and there is a negative 

correlation between the emission factor of CO and 

the change in latitude, which indicates that the 

emission factor of CO has a decreasing trend with 

the increase of latitude, this finding has important 

implications for the environmental management 

of transportation emissions in high-latitude 

regions. On the contrary, the emission factor of 

NOx has a positive correlation with the change of 

latitude, which reveals that the emission factor of 

NOx has an upward trend with the increase of 

latitude, this may be related to the unique climatic 

conditions and vehicle emission sources in high-

latitude regions. For the emission factor of HC, 

the change in latitude cannot be ignored as a 

general sensitivity parameter, and its positive 

correlation indicates that the emission factor of 

HC increases with the increase of latitude, 

although its sensitivity is not as significant as that 

of CO and NOx emission factors. 

4.2  Correlation analysis by SPSS 

After the sensitivity analysis, in order to further 

analyze and verify the accuracy of the effect of 

changes in altitude and latitude on the pollutants, 

these data are further examined at a deeper level. 

The SPSS software has a powerful data 

processing capability that greatly simplifies the 

data processing process, and it is widely used in 

statistical analysis across various disciplines. 

Many scholars and researchers have used the 

SPSS software for data analysis and have made 
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numerous achievements
28

. Therefore, it is feasible 

to analyze the trends of pollutant emissions at 

different altitudes and latitudes using the 

correlation analysis method in the SPSS software. 

Common correlation analysis methods include: 

Pearson, which is used to measure the linear 

correlation between two continuous variables; 

Spearman, which is used to measure the 

hierarchical (non-linear) correlation between two 

variables; Kendall, another non-parametric 

method for measuring correlation, is suitable for 

evaluating the monotonic relationship between 

two ordered variables by comparing the 

consistency of data pairs to determine whether 

they increase or decrease simultaneously
29

. In the 

correlation analysis, the normality test function of 

the SPSS software is first used to examine the 

pollutant emission data under the change of 

altitude and latitude. If the data do not fit the 

normal distribution, it indicates that the 

assumptions of the parametric test such as 

Pearson's correlation are not met. In this case, it is 

more appropriate to use a non-parametric test such 

as Spearman's hierarchical correlation analysis, 

which does not assume normality of the data. 

The Spearman correlation coefficient, usually 

denoted by the Greek letter ρ, is a parameter 

indicator used to measure the correlation of two 

variables, and its calculation equation is as 

follows: 

    
    

 

 (    )
     

where,   is the Spearman correlation coefficient; 

   is the ranking difference between the order of 

altitude or latitude and the corresponding order of 

each pollutant emission from small to large for the 

ith geographic region; 

  is the number of input parameters. 

When performing the calculation of the Spearman 

correlation coefficient, the value of ρ is between -

1 and 1. If 0.7<|ρ|≤1, it indicates that the emission 

is very closely related to the parameter change; if 

0.4<|ρ|≤0.7, it indicates that the emission is 

closely related to the parameter change; if 

0<|ρ|≤0.4, it indicates that the emission is not 

closely related to the parameter change; if 0<ρ<1, 

it indicates that the emission is positively 

correlated with the parameter change; if -1<ρ<0, it 

indicates that the emission is negatively correlated 

with the parameter change. The closer the value of 

ρ is to 0, the weaker the correlation between 

emissions and parameter changes, and the closer 

the value of ρ is to ±1, the stronger the correlation 

between emissions and parameter changes. 

The significance test of the SPSS software is used 

to evaluate the likelihood of random variation in 

the correlations revealed by Spearman correlation 

coefficient, thus providing a scientific method to 

distinguish whether the relationship is real or 

accidental. P-value is usually used for significance 

test, if P<0.05, the correlation is usually 

considered significant, indicating that the 

correlation is highly likely to have a real effect; if 

P>0.05, the correlation is considered not 

significant, indicating that the correlation is likely 

to occur by chance. 

Spearman correlation analysis can assess the 

relationship between two variables, especially if 

the data does not satisfy a normal distribution or 

the relationship is not linear, which is important 

for understanding the relationship between the 

variables. The significance test provided by the 

SPSS software can help to determine whether the 

results are statistically significant. Therefore, the 

significance test and Spearman correlation 

analysis by the SPSS software after sensitivity 

analysis not only deepen the understanding of the 

calculation results, but also enhance the credibility 

and persuasion of the findings. This analysis 

process helps us to better understand the patterns 

and trends behind the data and provides reliable 

statistical support for subsequent research and 

decision-making. The results of the correlation 

analysis by SPSS are shown in Table 8.

 

Table 8 Correlation analysis of altitude and latitude with different pollutants emissions under 

different geographic region selection 

 Simulated 

Regions 

Latitud

e 

Altitude(m

) 

Spearman correlation coefficient ρ/ P-value 

CO HC NOx PM2.5 

Different 

Altitude 

Gray County 37°40′ 844 -

0.667/0.219 

-

0.667/0.219 

-

0.7/0.18

-

0.667/0.219 Harper 37°11′ 433 
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County 8 

Harvey 

County 

38°04′ 347 

Baca County 37°23′ 1,309 

Alamosa 

County 

37°28′ 2,299 

Different 

Latitude 

Gray County 37°40′ 844 -1/0.01 0.5/0.667 0.5/0.66

7 

0.5/0.667 

Glasscock 

County 

31°51′ 801 

Daniels 

County 

48°46′ 818 

 

As can be seen from Table 8, the significance P-

values of the correlation analysis between motor 

vehicle pollutant emissions and altitude for the 

simulated geographic regions with different 

altitudes are all greater than 0.05, indicating that 

there is no statistically significant correlation 

between the pollutant emissions and altitude in the 

five simulated geographic regions with different 

altitudes based on the MOVES model. Moreover, 

the correlation calculated by Spearman correlation 

coefficient is likely to be the result of random 

fluctuations in the sample rather than by the 

substantial effect of altitude as a geographical 

factor. 

By studying the relationship between latitude and 

motor vehicle pollutant emissions, it is found that 

for the pollutant CO, the Spearman coefficient is -

1, it is shown that the CO emission is closely 

related to the change of latitude, and the 

correlation is negative, which indicates that the 

CO emission decreases significantly with the 

increase of latitude. This is further confirmed by 

the significance test of the SPSS software with a 

P-value (0.01) of less than 0.05, indicating that 

there is a significant correlation between CO 

emissions and latitude, while the significance of 

HC, NOx and PM2.5 are greater than 0.05 

indicating that these three pollutants do not have a 

significant correlation with latitude. The 

combined analysis shows that the effect of latitude 

on motor vehicle pollutant emissions is more 

significant. 

5. Conclusion 

This paper focuses on how non-U.S. cities make 

decisions in the selection of geographic region 

parameters when using the MOVES software to 

predict motor vehicle emission in order to obtain 

more accurate prediction results. Firstly, the 

influencing factors determining the selection of 

geographic region were analyzed through 

literature review, which identified latitude and 

altitude as the main factors affecting geographic 

region selection. Then, Taiyuan City was chosen 

as a non-U.S. city to be simulated, by selecting the 

geographic region parameters with different 

latitudes at similar altitudes and different altitudes 

at similar latitudes in the software, the emissions 

of different pollutants were calculated. Finally, the 

effects of altitude and latitude on pollutant 

emission factors were analyzed by SAF sensitivity 

analysis, and the correlation between altitude and 

latitude and pollutant emissions was analyzed by 

Spearman's hierarchical correlation analysis in the 

SPSS software. 

The results of motor vehicle pollutant simulations 

show that the CO emissions are the largest in 

Taiyuan's on-road motor vehicle emissions, 

followed by NOx emissions, and finally HC and 

PM2.5 emissions, so CO is the main pollutant in 

the results of motor vehicle pollutant simulations 

in Taiyuan City. Overall, the changes of CO and 

NOx emission factors are more obvious in the four 

pollutant calculation results of the MOVES model 

with HC and PM2.5 are less affected by the 

changes of altitude and latitude.  

By calculating the sensitivity coefficients and the 

correlation analysis results of the SPSS software, 

it is found that the calculated sensitivity 

coefficient of altitude to CO is less than 1, which 

is a general sensitivity parameter when the 

latitude is determined in MOVES software, 

indicating that the effect of altitude on the 

emission factor of CO is not significant, and the 

correlation significance calculated by the SPSS 

software is greater than 0.05, which further proves 

that there is no significant correlation between 

altitude and the emission factors of CO. The 
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sensitivity coefficients of the other three 

pollutants (NOx, HC, and PM2.5) are smaller than 

CO and are also not significantly correlated with 

altitude. As a result, the effect of altitude on the 

emission factors of the four pollutants is small, 

and the geographical factor of altitude can be 

disregarded when localizing the geographic region 

selection for the MOVES model. 

The sensitivity coefficient of CO is greater than 1 

when the altitude is determined in the MOVES 

software, indicating that latitude is an important 

sensitivity parameter and has a great influence on 

the emission factor of CO, and the correlation 

significance calculated by the SPSS software is 

0.01, which further confirms that latitude has a 

significant influence on the emission factor of 

CO; while for the emission factor of NOx, 

although the calculated sensitivity coefficient is 

also greater than 1, indicating that latitude also 

affects the emission factor of NOx, the correlation 

significance calculated by the SPSS software is 

greater than 0.05, which may imply that the 

selection of the reference sites is not sufficiently 

representative of the wide geographic distribution 

because the number of the current simulated 

regions is limited, leading to a lack of 

generalizability of the results. Therefore, when 

using MOVES software to localize the simulation 

for geographic region selection, cities with similar 

latitude should be selected as the simulated 

geographic regions if the altitude is already 

determined to ensure the accuracy and reliability 

of the simulation results. 
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